neonucleus/src/neonucleus.h
2025-07-31 23:33:49 +02:00

1163 lines
45 KiB
C

#ifndef NEONUCLEUS_H
#define NEONUCLEUS_H
#ifndef NULL
#ifdef __cplusplus
#define NULL nullptr
#else
#define NULL ((void *)0)
#endif
#endif
#ifdef NN_BAREMETAL
#ifdef NN_BIT32
typedef int nn_intptr_t;
typedef unsigned int nn_size_t;
#else
typedef __INTPTR_TYPE__ nn_intptr_t;
typedef __SIZE_TYPE__ nn_size_t;
#endif
#else
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
typedef intptr_t nn_intptr_t;
typedef size_t nn_size_t;
#endif
#ifdef bool
typedef bool nn_bool_t;
#else
typedef unsigned char nn_bool_t;
#define bool nn_bool_t
#endif
#ifdef true
#define NN_TRUE true
#else
#define NN_TRUE 1
#define true NN_TRUE
#endif
#ifdef false
#define NN_FALSE false
#else
#define NN_FALSE 0
#define false NN_FALSE
#endif
typedef long long nn_integer_t;
// Based off https://stackoverflow.com/questions/5919996/how-to-detect-reliably-mac-os-x-ios-linux-windows-in-c-preprocessor
#if defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || defined(__NT__)
//define something for Windows (32-bit and 64-bit, this part is common)
#ifdef _WIN64
#define NN_WINDOWS
#else
#error "Windows 32-bit is not supported"
#endif
#elif __APPLE__
#include <TargetConditionals.h>
#if TARGET_IPHONE_SIMULATOR
#error "iPhone Emulators are not supported"
#elif TARGET_OS_MACCATALYST
// I guess?
#define NN_MACOS
#elif TARGET_OS_IPHONE
#error "iPhone are not supported"
#elif TARGET_OS_MAC
#define NN_MACOS
#else
#error "Unknown Apple platform"
#endif
#elif __ANDROID__
#error "Android is not supported"
#elif __linux__
#define NN_LINUX
#endif
#if __unix__ // all unices not caught above
// Unix
#define NN_UNIX
#define NN_POSIX
#elif defined(_POSIX_VERSION)
// POSIX
#define NN_POSIX
#endif
#ifdef __cplusplus
extern "C" {
#endif
// The entire C API, in one header
// Magic limits
// If your component needs more than these, redesign your API.
#define NN_MAX_ARGS 32
#define NN_MAX_RETS 32
#define NN_MAX_METHODS 32
#define NN_MAX_USERS 128
#define NN_MAX_ARCHITECTURES 16
#define NN_MAX_SIGNALS 128
#define NN_MAX_SIGNAL_VALS 32
#define NN_MAX_USERDATA 1024
#define NN_MAX_USER_SIZE 128
#define NN_MAX_SIGNAL_SIZE 8192
#define NN_MAX_OPEN_FILES 128
#define NN_MAX_SCREEN_KEYBOARDS 64
#define NN_MAX_PATH 256
#define NN_PORT_MAX 65535
#define NN_MAX_WAKEUPMSG 2048
#define NN_MAX_CHANNEL_SIZE 256
#define NN_TUNNEL_PORT 0
#define NN_PORT_CLOSEALL 0
#define NN_MAX_CONCURRENT_RESOURCES 64
#define NN_NULL_RESOURCE 0
#define NN_OVERHEAT_MIN 100
#define NN_CALL_HEAT 0.05
#define NN_CALL_COST 1
#define NN_LABEL_SIZE 128
#define NN_MAXIMUM_UNICODE_BUFFER 4
#define NN_MAX_ERROR_BUFFER 128
typedef struct nn_guard nn_guard;
#ifdef __STDC_NO_ATOMICS__
typedef size_t nn_refc;
#else
typedef _Atomic(nn_size_t) nn_refc;
#endif
typedef struct nn_universe nn_universe;
typedef struct nn_computer nn_computer;
typedef struct nn_component nn_component;
typedef struct nn_componentTable nn_componentTable;
typedef unsigned long long nn_timestamp_t;
// A non-zero malloc is a null ptr, with a 0 oldSize, but a non-0 newSize.
// A zero malloc is never called, the proc address itself is returned, which is ignored when freeing.
// A free is a non-null ptr, with a non-zero oldSize, but a newSize of 0.
// A realloc is a non-null ptr, with a non-zero oldSize, and a non-zero newSize.
typedef void *nn_AllocProc(void *userdata, void *ptr, nn_size_t oldSize, nn_size_t newSize, void *extra);
typedef struct nn_Alloc {
void *userdata;
nn_AllocProc *proc;
} nn_Alloc;
typedef struct nn_architecture {
void *userdata;
const char *archName;
void *(*setup)(nn_computer *computer, void *userdata);
void (*teardown)(nn_computer *computer, void *state, void *userdata);
nn_size_t (*getMemoryUsage)(nn_computer *computer, void *state, void *userdata);
void (*tick)(nn_computer *computer, void *state, void *userdata);
/* Pointer returned should be allocated with nn_malloc or nn_realloc, so it can be freed with nn_free */
char *(*serialize)(nn_computer *computer, nn_Alloc *alloc, void *state, void *userdata, nn_size_t *len);
void (*deserialize)(nn_computer *computer, const char *data, nn_size_t len, void *state, void *userdata);
} nn_architecture;
typedef char *nn_address;
#define NN_LOCK_DEFAULT 0
#define NN_LOCK_IMMEDIATE 1
#define NN_LOCK_INIT 0
#define NN_LOCK_DEINIT 1
#define NN_LOCK_RETAIN 2
#define NN_LOCK_RELEASE 3
typedef nn_bool_t nn_LockProc(void *userdata, void *lock, int action, int flags);
typedef struct nn_LockManager {
void *userdata;
nn_size_t lockSize;
nn_LockProc *proc;
} nn_LockManager;
typedef double nn_ClockProc(void *userdata);
typedef struct nn_Clock {
void *userdata;
nn_ClockProc *proc;
} nn_Clock;
typedef nn_size_t nn_RngProc(void *userdata);
typedef struct nn_Rng {
void *userdata;
nn_size_t maximum;
nn_RngProc *proc;
} nn_Rng;
nn_size_t nn_rand(nn_Rng *rng);
// returns from 0 to 1 (inclusive)
double nn_randf(nn_Rng *rng);
// returns from 0 to 1 (exclusive)
double nn_randfe(nn_Rng *rng);
typedef struct nn_Context {
nn_Alloc allocator;
nn_LockManager lockManager;
nn_Clock clock;
nn_Rng rng;
} nn_Context;
// libc-like utils
void nn_memset(void *buf, unsigned char byte, nn_size_t len);
void nn_memcpy(void *dest, const void *src, nn_size_t len);
char *nn_strcpy(char *dest, const char *src);
const char *nn_strchr(const char *str, int ch);
int nn_strcmp(const char *a, const char *b);
nn_size_t nn_strlen(const char *a);
nn_bool_t nn_strbegin(const char *s, const char *prefix);
#ifndef NN_BAREMETAL
nn_Alloc nn_libcAllocator(void);
nn_Clock nn_libcRealTime(void);
nn_LockManager nn_libcMutex(void);
nn_Rng nn_libcRng(void);
nn_Context nn_libcContext(void);
#endif
nn_LockManager nn_noMutex(void);
// Error buffers!!!
typedef char nn_errorbuf_t[NN_MAX_ERROR_BUFFER];
nn_bool_t nn_error_isEmpty(nn_errorbuf_t buf);
void nn_error_write(nn_errorbuf_t buf, const char *s);
void nn_error_clear(nn_errorbuf_t buf);
// Values for architectures
#define NN_VALUE_INT 0
#define NN_VALUE_NUMBER 1
#define NN_VALUE_BOOL 2
#define NN_VALUE_CSTR 3
#define NN_VALUE_STR 4
#define NN_VALUE_ARRAY 5
#define NN_VALUE_TABLE 6
#define NN_VALUE_NIL 7
#define NN_VALUE_RESOURCE 8
typedef struct nn_string {
char *data;
nn_size_t len;
nn_size_t refc;
nn_Alloc alloc;
} nn_string;
typedef struct nn_array {
struct nn_value *values;
nn_size_t len;
nn_size_t refc;
nn_Alloc alloc;
} nn_array;
typedef struct nn_object {
struct nn_pair *pairs;
nn_size_t len;
nn_size_t refc;
nn_Alloc alloc;
} nn_table;
typedef struct nn_value {
nn_size_t tag;
union {
nn_integer_t integer;
double number;
nn_bool_t boolean;
const char *cstring;
nn_string *string;
nn_array *array;
nn_table *table;
nn_size_t resourceID;
};
} nn_value;
typedef struct nn_pair {
nn_value key;
nn_value val;
} nn_pair;
// we expose the allocator because of some utilities
void *nn_alloc(nn_Alloc *alloc, nn_size_t size);
void *nn_resize(nn_Alloc *alloc, void *memory, nn_size_t oldSize, nn_size_t newSize);
void nn_dealloc(nn_Alloc *alloc, void *memory, nn_size_t size);
// Utilities, both internal and external
char *nn_strdup(nn_Alloc *alloc, const char *s);
void *nn_memdup(nn_Alloc *alloc, const void *buf, nn_size_t len);
void nn_deallocStr(nn_Alloc *alloc, char *s);
nn_address nn_randomUUID(nn_Context *ctx);
nn_bool_t nn_path_hasSlash(const char *path);
nn_size_t nn_path_firstSlash(const char *path);
nn_size_t nn_path_lastSlash(const char *path);
// returns whether it is the last name
nn_bool_t nn_path_firstName(const char path[NN_MAX_PATH], char firstDirectory[NN_MAX_PATH], char subpath[NN_MAX_PATH]);
// returns whether it is the only name
nn_bool_t nn_path_lastName(const char path[NN_MAX_PATH], char name[NN_MAX_PATH], char parent[NN_MAX_PATH]);
// returns whether the path is valid
nn_bool_t nn_path_isValid(const char *path);
// writes to canonical the standard form of the path
// returns whether the path is so horribly bad it cannot be converted in canonical form.
nn_bool_t nn_path_canonical(const char path[NN_MAX_PATH], char canonical[NN_MAX_PATH]);
nn_guard *nn_newGuard(nn_Context *context);
void nn_lock(nn_Context *context, nn_guard *guard);
nn_bool_t nn_tryLock(nn_Context *context, nn_guard *guard);
void nn_unlock(nn_Context *context, nn_guard *guard);
void nn_deleteGuard(nn_Context *context, nn_guard *guard);
void nn_addRef(nn_refc *refc, nn_size_t count);
void nn_incRef(nn_refc *refc);
/* Returns true if the object should be freed */
nn_bool_t nn_removeRef(nn_refc *refc, nn_size_t count);
/* Returns true if the object should be freed */
nn_bool_t nn_decRef(nn_refc *refc);
// Unicode (more specifically, UTF-8) stuff
nn_bool_t nn_unicode_validate(const char *s);
// expects NULL terminator
nn_bool_t nn_unicode_isValidCodepoint(const char *s);
// returned string must be nn_deallocStr()'d
char *nn_unicode_char(nn_Alloc *alloc, unsigned int *codepoints, nn_size_t codepointCount);
// returned array must be nn_dealloc()'d
unsigned int *nn_unicode_codepoints(nn_Alloc *alloc, const char *s, nn_size_t *len);
nn_size_t nn_unicode_len(const char *s);
unsigned int nn_unicode_codepointAt(const char *s, nn_size_t byteOffset);
nn_size_t nn_unicode_codepointSize(unsigned int codepoint);
void nn_unicode_codepointToChar(char buffer[NN_MAXIMUM_UNICODE_BUFFER], unsigned int codepoint, nn_size_t *len);
nn_size_t nn_unicode_charWidth(unsigned int codepoint);
nn_size_t nn_unicode_wlen(const char *s);
unsigned int nn_unicode_upperCodepoint(unsigned int codepoint);
// returned string must be nn_deallocStr()'d
char *nn_unicode_upper(nn_Alloc *alloc, const char *s);
unsigned int nn_unicode_lowerCodepoint(unsigned int codepoint);
// returned string must be nn_deallocStr()'d
char *nn_unicode_lower(nn_Alloc *alloc, const char *s);
// permissive means it allows invalid UTF-8, in which case each byte is treated as a codepoint
// it will return the codepoint starting at byte *index, but will also set *index to the byte afterward it
// since it is permissive, it supports invalid UTF-8
unsigned int nn_unicode_nextCodepointPermissive(const char *s, nn_size_t *index);
nn_size_t nn_unicode_lenPermissive(const char *s);
nn_size_t nn_unicode_wlenPermissive(const char *s);
// if not found, it will return -1. This is why it is an nn_intptr_t
nn_intptr_t nn_unicode_indexPermissive(const char *s, nn_size_t codepointIndex);
// Data card stuff
// Hashing
void nn_data_crc32(const char *inBuf, nn_size_t buflen, char outBuf[4]);
void nn_data_md5(const char *inBuf, nn_size_t buflen, char outBuf[16]);
void nn_data_sha256(const char *inBuf, nn_size_t buflen, char outBuf[32]);
// Base64
// The initial value of *len is the size of buf, with the new value being the length of the returned buffer.
char *nn_data_decode64(nn_Alloc *alloc, const char *buf, nn_size_t *len);
char *nn_data_encode64(nn_Alloc *alloc, const char *buf, nn_size_t *len);
// Deflate/inflate
char *nn_data_deflate(nn_Alloc *alloc, const char *buf, nn_size_t *len);
char *nn_data_inflate(nn_Alloc *alloc, const char *buf, nn_size_t *len);
// AES
char *nn_data_aes_encrypt(nn_Alloc *alloc, const char *buf, nn_size_t *len, const char key[16], const char iv[16]);
char *nn_data_aes_decrypt(nn_Alloc *alloc, const char *buf, nn_size_t *len, const char key[16], const char iv[16]);
// ECDH
// if longKeys is on, instead of taking 32 bytes, the keys take up 48 bytes.
nn_size_t nn_data_ecdh_keylen(nn_bool_t longKeys);
// use nn_data_ecdh_keylen to figure out the expected length for the buffers
void nn_data_ecdh_generateKeyPair(nn_Context *context, nn_bool_t longKeys, char *publicKey, char *privateKey);
nn_bool_t nn_data_ecdsa_check(nn_bool_t longKeys, const char *buf, nn_size_t buflen, const char *sig, nn_size_t siglen);
char *nn_data_ecdsa_sign(nn_Alloc *alloc, const char *buf, nn_size_t *buflen, const char *key, nn_bool_t longKeys);
char *nn_data_ecdh_getSharedKey(nn_Alloc *alloc, nn_size_t *len, const char *privateKey, const char *publicKey, nn_bool_t longKeys);
// ECC
char *nn_data_hamming_encode(nn_Alloc *alloc, const char *buf, nn_size_t *len);
char *nn_data_hamming_decode(nn_Alloc *alloc, const char *buf, nn_size_t *len);
// Universe stuff
nn_universe *nn_newUniverse(nn_Context context);
nn_Context *nn_getContext(nn_universe *universe);
nn_Alloc *nn_getAllocator(nn_universe *universe);
nn_Clock *nn_getClock(nn_universe *universe);
nn_LockManager *nn_getLockManager(nn_universe *universe);
nn_Rng *nn_getRng(nn_universe *universe);
void nn_unsafeDeleteUniverse(nn_universe *universe);
void *nn_queryUserdata(nn_universe *universe, const char *name);
void nn_storeUserdata(nn_universe *universe, const char *name, void *data);
double nn_getTime(nn_universe *universe);
// Device info
typedef struct nn_deviceInfoList_t nn_deviceInfoList_t;
typedef struct nn_deviceInfo_t nn_deviceInfo_t;
// Common / standard keys
#define NN_DEVICEINFO_KEY_CLASS "class"
#define NN_DEVICEINFO_KEY_VENDOR "vendor"
#define NN_DEVICEINFO_KEY_PRODUCT "product"
#define NN_DEVICEINFO_KEY_CAPACITY "capacity"
#define NN_DEVICEINFO_KEY_CLOCK "clock"
#define NN_DEVICEINFO_KEY_DESCRIPTION "description"
// Common / standard values
#define NN_DEVICEINFO_CLASS_INPUT "input"
#define NN_DEVICEINFO_CLASS_RAM "memory"
#define NN_DEVICEINFO_CLASS_ROM "memory" // not a mistake, they both use memory
#define NN_DEVICEINFO_CLASS_CPU "processor" // also used by data card
#define NN_DEVICEINFO_CLASS_DATA "processor" // also used by data card
#define NN_DEVICEINFO_CLASS_GPU "display" // not a mistake, it and screen have the same class
#define NN_DEVICEINFO_CLASS_SCREEN "display"
#define NN_DEVICEINFO_CLASS_COMPUTER "system"
#define NN_DEVICEINFO_CLASS_STORAGE "volume"
#define NN_DEVICEINFO_CLASS_INTERNET "communication"
#define NN_DEVICEINFO_CLASS_REDSTONE "communication" // why do they use the same one? idfk
#define NN_DEVICEINFO_CLASS_MODEM "network"
#define NN_DEVICEINFO_CLASS_TUNNEL "network"
#define NN_DEVICEINFO_CLASS_GENERIC "generic"
nn_deviceInfoList_t *nn_newDeviceInfoList(nn_Context *ctx, nn_size_t preallocate);
void nn_deleteDeviceInfoList(nn_deviceInfoList_t *deviceInfoList);
nn_deviceInfo_t *nn_addDeviceInfo(nn_deviceInfoList_t *list, nn_address address, nn_size_t maxKeys);
void nn_removeDeviceInfo(nn_deviceInfoList_t *list, const char *address);
nn_bool_t nn_registerDeviceKey(nn_deviceInfo_t *deviceInfo, const char *key, const char *value);
nn_deviceInfo_t *nn_getDeviceInfoAt(nn_deviceInfoList_t *list, nn_size_t idx);
nn_size_t nn_getDeviceCount(nn_deviceInfoList_t *list);
const char *nn_getDeviceInfoAddress(nn_deviceInfo_t *deviceInfo);
const char *nn_iterateDeviceInfoKeys(nn_deviceInfo_t *deviceInfo, nn_size_t idx, const char **value);
nn_size_t nn_getDeviceKeyCount(nn_deviceInfo_t *deviceInfo);
// Computer running states
nn_computer *nn_newComputer(nn_universe *universe, nn_address address, nn_architecture *arch, void *userdata, nn_size_t memoryLimit, nn_size_t componentLimit);
nn_universe *nn_getUniverse(nn_computer *computer);
int nn_tickComputer(nn_computer *computer);
double nn_getUptime(nn_computer *computer);
nn_size_t nn_getComputerMemoryUsed(nn_computer *computer);
nn_size_t nn_getComputerMemoryTotal(nn_computer *computer);
void *nn_getComputerUserData(nn_computer *computer);
void nn_addSupportedArchitecture(nn_computer *computer, nn_architecture *arch);
nn_architecture *nn_getSupportedArchitecture(nn_computer *computer, nn_size_t idx);
nn_architecture *nn_getArchitecture(nn_computer *computer);
nn_architecture *nn_getNextArchitecture(nn_computer *computer);
void nn_setNextArchitecture(nn_computer *computer, nn_architecture *arch);
void nn_deleteComputer(nn_computer *computer);
const char *nn_pushSignal(nn_computer *computer, nn_value *values, nn_size_t len);
nn_value nn_fetchSignalValue(nn_computer *computer, nn_size_t index);
nn_size_t nn_signalSize(nn_computer *computer);
void nn_popSignal(nn_computer *computer);
const char *nn_addUser(nn_computer *computer, const char *name);
void nn_deleteUser(nn_computer *computer, const char *name);
const char *nn_indexUser(nn_computer *computer, nn_size_t idx);
nn_bool_t nn_isUser(nn_computer *computer, const char *name);
void nn_setCallBudget(nn_computer *computer, double callBudget);
double nn_getCallBudget(nn_computer *computer);
void nn_callCost(nn_computer *computer, double cost);
double nn_getCallCost(nn_computer *computer);
nn_bool_t nn_isOverworked(nn_computer *computer);
void nn_triggerIndirect(nn_computer *computer);
nn_deviceInfoList_t *nn_getComputerDeviceInfoList(nn_computer *computer);
/* The memory returned can be freed with nn_dealloc() */
char *nn_serializeProgram(nn_computer *computer, nn_Alloc *alloc, nn_size_t *len);
void nn_deserializeProgram(nn_computer *computer, const char *memory, nn_size_t len);
nn_Context *nn_getComputerContext(nn_computer *computer);
nn_guard *nn_getComputerLock(nn_computer *computer);
/// This means the computer has not yet started.
#define NN_STATE_SETUP 0
/// This means the computer is running. There is no matching off-state, as the computer is
/// only off when it is deleted.
#define NN_STATE_RUNNING 1
/// This means a component's invocation could not be done due to a crucial resource being busy.
/// The sandbox should yield, then *invoke the component method again.*
#define NN_STATE_BUSY 2
/// This state occurs when a call to removeEnergy has consumed all the energy left.
/// The sandbox should yield, and the runner should shut down the computer.
/// No error is set, the sandbox can set it if it wanted to.
#define NN_STATE_BLACKOUT 3
/// This state only indicates that the runner should turn off the computer, but not due to a blackout.
/// The runner need not bring it back.
#define NN_STATE_CLOSING 4
/// This state indicates that the runner should turn off the computer, but not due to a blackout.
/// The runner should bring it back.
/// By "bring it back", we mean delete the computer, then recreate the entire state.
#define NN_STATE_REPEAT 5
/// This state indciates that the runner should turn off the computer, to switch architectures.
/// The architecture is returned by getNextArchitecture.
#define NN_STATE_SWITCH 6
/// The machine is overworked.
#define NN_STATE_OVERWORKED 7
int nn_getState(nn_computer *computer);
void nn_setState(nn_computer *computer, int state);
void nn_computer_clearBeep(nn_computer *computer);
void nn_computer_setBeep(nn_computer *computer, double frequency, double duration, double volume);
nn_bool_t nn_computer_getBeep(nn_computer *computer, double *frequency, double *duration, double *volume);
void nn_setEnergyInfo(nn_computer *computer, double energy, double capacity);
double nn_getEnergy(nn_computer *computer);
double nn_getMaxEnergy(nn_computer *computer);
void nn_removeEnergy(nn_computer *computer, double energy);
void nn_addEnergy(nn_computer *computer, double amount);
double nn_getTemperature(nn_computer *computer);
double nn_getThermalCoefficient(nn_computer *computer);
double nn_getRoomTemperature(nn_computer *computer);
void nn_setTemperature(nn_computer *computer, double temperature);
void nn_setTemperatureCoefficient(nn_computer *computer, double coefficient);
void nn_setRoomTemperature(nn_computer *computer, double roomTemperature);
void nn_addHeat(nn_computer *computer, double heat);
void nn_removeHeat(nn_computer *computer, double heat);
/* Checks against NN_OVERHEAT_MIN */
nn_bool_t nn_isOverheating(nn_computer *computer);
// NULL if there is no error.
const char *nn_getError(nn_computer *computer);
void nn_clearError(nn_computer *computer);
void nn_setError(nn_computer *computer, const char *err);
// this version does NOT allocate a copy of err, thus err should come from the data
// segment or memory with the same lifetime as the computer. This may not be possible
// in garbage-collected languages using this API, and thus should be avoided.
// This can be used by low-level implementations of architectures such that any
// internal out-of-memory errors can be reported. The normal setError would report
// no error if allocating the copy failed, and would clear any previous error.
void nn_setCError(nn_computer *computer, const char *err);
// Component stuff
nn_component *nn_newComponent(nn_computer *computer, nn_address address, int slot, nn_componentTable *table, void *userdata);
void nn_setTmpAddress(nn_computer *computer, nn_address tmp);
nn_address nn_getComputerAddress(nn_computer *computer);
nn_address nn_getTmpAddress(nn_computer *computer);
void nn_removeComponent(nn_computer *computer, nn_address address);
void nn_destroyComponent(nn_component *component);
nn_computer *nn_getComputerOfComponent(nn_component *component);
nn_address nn_getComponentAddress(nn_component *component);
int nn_getComponentSlot(nn_component *component);
nn_componentTable *nn_getComponentTable(nn_component *component);
const char *nn_getComponentType(nn_componentTable *table);
void *nn_getComponentUserdata(nn_component *component);
nn_component *nn_findComponent(nn_computer *computer, nn_address address);
// the internal index is not the array index, but rather an index into
// an internal structure. YOU SHOULD NOT ADD OR REMOVE COMPONENTS WHILE ITERATING.
// the internalIndex SHOULD BE INITIALIZED TO 0.
// Returns NULL at the end
nn_component *nn_iterComponent(nn_computer *computer, nn_size_t *internalIndex);
// Component VTable stuff
typedef void *nn_componentConstructor(void *tableUserdata, void *componentUserdata);
typedef void *nn_componentDestructor(void *tableUserdata, nn_component *component, void *componentUserdata);
typedef void nn_componentMethod(void *componentUserdata, void *methodUserdata, nn_component *component, nn_computer *computer);
typedef nn_bool_t nn_componentMethodCondition_t(void *componentUserdata, void *methodUserdata);
typedef struct nn_method_t nn_method_t;
nn_componentTable *nn_newComponentTable(nn_Alloc *alloc, const char *typeName, void *userdata, nn_componentConstructor *constructor, nn_componentDestructor *destructor);
void nn_destroyComponentTable(nn_componentTable *table);
nn_method_t *nn_defineMethod(nn_componentTable *table, const char *methodName, nn_componentMethod *methodFunc, const char *methodDoc);
void nn_method_setDirect(nn_method_t *method, nn_bool_t direct);
void nn_method_setUserdata(nn_method_t *method, void *userdata);
void nn_method_setCondition(nn_method_t *method, nn_componentMethodCondition_t *condition);
const char *nn_getTableMethod(nn_componentTable *table, nn_size_t idx, nn_bool_t *outDirect);
const char *nn_methodDoc(nn_componentTable *table, const char *methodName);
nn_bool_t nn_isMethodEnabled(nn_component *component, const char *methodName);
// Resource stuff
typedef struct nn_resourceTable_t nn_resourceTable_t;
typedef struct nn_resourceMethod_t nn_resourceMethod_t;
typedef void nn_resourceDestructor_t(void *userdata);
typedef void nn_resourceMethodCallback_t(void *userdata, void *methodUserdata, nn_computer *computer);
typedef nn_bool_t nn_resourceMethodCondition_t(void *userdata, void *methodUserdata);
nn_resourceTable_t *nn_resource_newTable(nn_Context *ctx, nn_resourceDestructor_t *dtor);
nn_resourceMethod_t *nn_resource_addMethod(nn_resourceTable_t *table, const char *methodName, nn_resourceMethodCallback_t *method, const char *doc);
void nn_resource_setUserdata(nn_resourceMethod_t *method, void *methodUserdata);
void nn_resource_setCondition(nn_resourceMethod_t *method, nn_resourceMethodCondition_t *methodCondition);
nn_bool_t nn_resource_invoke(nn_computer *computer, nn_size_t resourceID, const char *method);
// returns the name, and NULL for out of bounds
const char *nn_resource_nextMethodInfo(nn_computer *computer, nn_size_t id, const char **doc, nn_size_t *idx);
nn_resourceTable_t *nn_resource_fetchTable(nn_computer *computer, nn_size_t resourceID);
nn_size_t nn_resource_allocate(nn_computer *computer, void *userdata, nn_resourceTable_t *table);
void nn_resource_release(nn_computer *computer, nn_size_t id);
// Component calling
/* Returns false if the method does not exist */
nn_bool_t nn_invokeComponentMethod(nn_component *component, const char *name);
void nn_simulateBufferedIndirect(nn_component *component, double amount, double amountPerTick);
void nn_resetCall(nn_computer *computer);
void nn_addArgument(nn_computer *computer, nn_value arg);
void nn_return(nn_computer *computer, nn_value val);
nn_value nn_getArgument(nn_computer *computer, nn_size_t idx);
nn_value nn_getReturn(nn_computer *computer, nn_size_t idx);
nn_size_t nn_getArgumentCount(nn_computer *computer);
nn_size_t nn_getReturnCount(nn_computer *computer);
// Value stuff
nn_value nn_values_nil(void);
nn_value nn_values_integer(nn_integer_t integer);
nn_value nn_values_number(double num);
nn_value nn_values_boolean(nn_bool_t boolean);
nn_value nn_values_cstring(const char *string);
nn_value nn_values_string(nn_Alloc *alloc, const char *string, nn_size_t len);
nn_value nn_values_array(nn_Alloc *alloc, nn_size_t len);
nn_value nn_values_table(nn_Alloc *alloc, nn_size_t pairCount);
nn_value nn_values_resource(nn_size_t id);
void nn_return_nil(nn_computer *computer);
void nn_return_integer(nn_computer *computer, nn_integer_t integer);
void nn_return_number(nn_computer *computer, double number);
void nn_return_boolean(nn_computer *computer, nn_bool_t boolean);
void nn_return_cstring(nn_computer *computer, const char *cstr);
void nn_return_string(nn_computer *computer, const char *str, nn_size_t len);
nn_value nn_return_array(nn_computer *computer, nn_size_t len);
nn_value nn_return_table(nn_computer *computer, nn_size_t len);
void nn_return_resource(nn_computer *computer, nn_size_t userdata);
nn_size_t nn_values_getType(nn_value val);
nn_value nn_values_retain(nn_value val);
void nn_values_drop(nn_value val);
void nn_values_dropAll(nn_value *values, nn_size_t len);
void nn_values_set(nn_value arr, nn_size_t idx, nn_value val);
nn_value nn_values_get(nn_value arr, nn_size_t idx);
void nn_values_setPair(nn_value obj, nn_size_t idx, nn_value key, nn_value val);
nn_pair nn_values_getPair(nn_value obj, nn_size_t idx);
nn_integer_t nn_toInt(nn_value val);
double nn_toNumber(nn_value val);
nn_bool_t nn_toBoolean(nn_value val);
const char *nn_toCString(nn_value val);
const char *nn_toString(nn_value val, nn_size_t *len);
nn_integer_t nn_toIntOr(nn_value val, nn_integer_t defaultVal);
double nn_toNumberOr(nn_value val, double defaultVal);
nn_bool_t nn_toBooleanOr(nn_value val, nn_bool_t defaultVal);
/*
* Computes the "packet size" of the values, using the same algorithm as OC.
* This is used by pushSignal to check the size
*/
nn_size_t nn_measurePacketSize(nn_value *vals, nn_size_t len);
// COMPONENTS
/* Loads the vtables for the default implementations of those components */
void nn_loadCoreComponentTables(nn_universe *universe);
// loading each component
void nn_loadEepromTable(nn_universe *universe);
void nn_loadFilesystemTable(nn_universe *universe);
void nn_loadDriveTable(nn_universe *universe);
void nn_loadScreenTable(nn_universe *universe);
void nn_loadGraphicsCardTable(nn_universe *universe);
void nn_loadKeyboardTable(nn_universe *universe);
void nn_loadModemTable(nn_universe *universe);
void nn_loadTunnelTable(nn_universe *universe);
void nn_loadDiskDriveTable(nn_universe *universe);
void nn_loadExternalComputerTable(nn_universe *universe);
nn_component *nn_mountKeyboard(nn_computer *computer, nn_address address, int slot);
// the helpers
// EEPROM
typedef struct nn_eepromControl {
double readHeatPerByte;
double writeHeatPerByte;
double readEnergyCostPerByte;
double writeEnergyCostPerByte;
double bytesReadPerTick;
double bytesWrittenPerTick;
} nn_eepromControl;
typedef struct nn_eepromTable {
void *userdata;
void (*deinit)(void *userdata);
// methods
nn_size_t size;
nn_size_t dataSize;
void (*getLabel)(void *userdata, char *buf, nn_size_t *buflen, nn_errorbuf_t error);
nn_size_t (*setLabel)(void *userdata, const char *buf, nn_size_t buflen, nn_errorbuf_t error);
nn_size_t (*get)(void *userdata, char *buf, nn_errorbuf_t error);
nn_bool_t (*set)(void *userdata, const char *buf, nn_size_t len, nn_errorbuf_t error);
nn_size_t (*getData)(void *userdata, char *buf, nn_errorbuf_t error);
nn_bool_t (*setData)(void *userdata, const char *buf, nn_size_t len, nn_errorbuf_t error);
// allocate the string with alloc. We recommend using nn_strdup()
char *(*getArchitecture)(nn_Alloc *alloc, void *userdata, nn_errorbuf_t error);
void (*setArchitecture)(void *userdata, const char *buf, nn_errorbuf_t error);
nn_bool_t (*isReadonly)(void *userdata, nn_errorbuf_t error);
nn_bool_t (*makeReadonly)(void *userdata, nn_errorbuf_t error);
} nn_eepromTable;
typedef struct nn_eeprom nn_eeprom;
typedef struct nn_veepromOptions {
const char *code;
nn_size_t len;
nn_size_t size;
const char *data;
nn_size_t dataLen;
nn_size_t dataSize;
char label[NN_LABEL_SIZE];
nn_size_t labelLen;
nn_bool_t isReadOnly;
} nn_veepromOptions;
nn_eeprom *nn_newEEPROM(nn_Context *context, nn_eepromTable table, nn_eepromControl control);
nn_eeprom *nn_volatileEEPROM(nn_Context *context, nn_veepromOptions opts, nn_eepromControl control);
nn_guard *nn_getEEPROMLock(nn_eeprom *eeprom);
void nn_retainEEPROM(nn_eeprom *eeprom);
nn_bool_t nn_destroyEEPROM(nn_eeprom *eeprom);
nn_component *nn_addEEPROM(nn_computer *computer, nn_address address, int slot, nn_eeprom *eeprom);
// FileSystem
typedef struct nn_filesystemControl {
double readBytesPerTick;
double writeBytesPerTick;
double removeFilesPerTick;
double createFilesPerTick;
double readHeatPerByte;
double writeHeatPerByte;
double removeHeat;
double createHeat;
double readEnergyPerByte;
double writeEnergyPerByte;
double removeEnergy;
double createEnergy;
} nn_filesystemControl;
typedef struct nn_filesystemTable {
void *userdata;
void (*deinit)(void *userdata);
void (*getLabel)(void *userdata, char *buf, nn_size_t *buflen, nn_errorbuf_t err);
nn_size_t (*setLabel)(void *userdata, const char *buf, nn_size_t buflen, nn_errorbuf_t err);
nn_size_t (*spaceUsed)(void *userdata);
nn_size_t spaceTotal;
nn_bool_t (*isReadOnly)(void *userdata, nn_errorbuf_t err);
// general operations
nn_size_t (*size)(void *userdata, const char *path, nn_errorbuf_t err);
nn_size_t (*remove)(void *userdata, const char *path, nn_errorbuf_t err);
nn_timestamp_t (*lastModified)(void *userdata, const char *path, nn_errorbuf_t err);
nn_size_t (*rename)(void *userdata, const char *from, const char *to, nn_errorbuf_t err);
nn_bool_t (*exists)(void *userdata, const char *path, nn_errorbuf_t err);
// directory operations
nn_bool_t (*isDirectory)(void *userdata, const char *path, nn_errorbuf_t err);
nn_bool_t (*makeDirectory)(void *userdata, const char *path, nn_errorbuf_t err);
// The returned array should be allocated with the supplied allocator.
// The strings should be null terminated. Use nn_strdup for the allocation to guarantee nn_deallocStr deallocates it correctly.
// For the array, the *exact* size of the allocation should be sizeof(char *) * (*len),
// If it is not, the behavior is undefined.
// We recommend first computing len then allocating, though if that is not doable or practical,
// consider nn_resize()ing it to the correct size to guarantee a correct deallocation.
char **(*list)(nn_Alloc *alloc, void *userdata, const char *path, nn_size_t *len, nn_errorbuf_t err);
// file operations
void *(*open)(void *userdata, const char *path, const char *mode, nn_errorbuf_t err);
nn_bool_t (*close)(void *userdata, void *fd, nn_errorbuf_t err);
nn_bool_t (*write)(void *userdata, void *fd, const char *buf, nn_size_t len, nn_errorbuf_t err);
nn_size_t (*read)(void *userdata, void *fd, char *buf, nn_size_t required, nn_errorbuf_t err);
nn_size_t (*seek)(void *userdata, void *fd, const char *whence, int off, nn_errorbuf_t err);
} nn_filesystemTable;
typedef struct nn_filesystem nn_filesystem;
typedef struct nn_vfilesystemImageNode {
const char *name;
// if NULL, the node is a directory
const char *data;
// if it is a directory, this is the amount of entries encoded afterwards
nn_size_t len;
} nn_vfilesystemImageNode;
typedef struct nn_vfilesystemOptions {
// used to compute lastModified
nn_timestamp_t creationTime;
nn_size_t maxDirEntries;
nn_size_t capacity;
nn_bool_t isReadOnly;
char label[NN_LABEL_SIZE];
nn_size_t labelLen;
// loading the files into the tmpfs
nn_vfilesystemImageNode *image;
nn_size_t rootEntriesInImage;
} nn_vfilesystemOptions;
nn_filesystem *nn_newFilesystem(nn_Context *context, nn_filesystemTable table, nn_filesystemControl control);
nn_filesystem *nn_volatileFilesystem(nn_Context *context, nn_vfilesystemOptions opts, nn_filesystemControl control);
nn_guard *nn_getFilesystemLock(nn_filesystem *fs);
void nn_retainFilesystem(nn_filesystem *fs);
nn_bool_t nn_destroyFilesystem(nn_filesystem *fs);
nn_component *nn_addFileSystem(nn_computer *computer, nn_address address, int slot, nn_filesystem *filesystem);
// Drive
typedef struct nn_driveControl {
double readSectorsPerTick;
double writeSectorsPerTick;
// Set it to 0 to disable seek latency.
double seekSectorsPerTick;
double readHeatPerSector;
double writeHeatPerSector;
double motorHeatPerSector;
double readEnergyPerSector;
double writeEnergyPerSector;
double motorEnergyPerSector;
// if not, seeking *backwards* will cost as much as a full spin.
nn_bool_t reversable;
} nn_driveControl;
typedef struct nn_driveTable {
void *userdata;
void (*deinit)(void *userdata);
void (*getLabel)(void *userdata, char *buf, nn_size_t *buflen);
nn_size_t (*setLabel)(void *userdata, const char *buf, nn_size_t buflen);
nn_size_t platterCount;
nn_size_t capacity;
nn_size_t sectorSize;
// sectors start at 1 as per OC.
void (*readSector)(void *userdata, int sector, char *buf);
void (*writeSector)(void *userdata, int sector, const char *buf);
// readByte and writeByte will internally use readSector and writeSector. This is to ensure they are handled *consistently.*
// Also makes the interface less redundant
} nn_driveTable;
typedef struct nn_vdriveOptions {
nn_size_t sectorSize;
nn_size_t platterCount;
nn_size_t capacity;
const char *data;
char label[NN_LABEL_SIZE];
nn_size_t labelLen;
} nn_vdriveOptions;
typedef struct nn_drive nn_drive;
nn_drive *nn_newDrive(nn_Context *context, nn_driveTable table, nn_driveControl control);
nn_drive *nn_volatileDrive(nn_Context *context, nn_vdriveOptions opts, nn_driveControl control);
nn_guard *nn_getDriveLock(nn_drive *drive);
void nn_retainDrive(nn_drive *drive);
nn_bool_t nn_destroyDrive(nn_drive *drive);
nn_component *nn_addDrive(nn_computer *computer, nn_address address, int slot, nn_drive *drive);
// Screens and GPUs
typedef struct nn_screen nn_screen;
typedef struct nn_scrchr_t {
unsigned int codepoint;
int fg;
int bg;
nn_bool_t isFgPalette;
nn_bool_t isBgPalette;
} nn_scrchr_t;
nn_screen *nn_newScreen(nn_Context *context, int maxWidth, int maxHeight, int maxDepth, int editableColors, int paletteColors);
nn_componentTable *nn_getScreenTable(nn_universe *universe);
void nn_retainScreen(nn_screen *screen);
void nn_destroyScreen(nn_screen *screen);
void nn_lockScreen(nn_screen *screen);
void nn_unlockScreen(nn_screen *screen);
void nn_getResolution(nn_screen *screen, int *width, int *height);
void nn_maxResolution(nn_screen *screen, int *width, int *height);
void nn_setResolution(nn_screen *screen, int width, int height);
// changes the maximum resolution
// DOES NOT USE THE LOCK AND THUS MAY CAUSE RACE CONDITIONS AND SEGFAULTS!!!!!
nn_bool_t nn_unsafeReallocateScreenBuffer(nn_screen *screen, int maxWidth, int maxHeight);
void nn_getViewport(nn_screen *screen, int *width, int *height);
void nn_setViewport(nn_screen *screen, int width, int height);
void nn_getAspectRatio(nn_screen *screen, int *width, int *height);
void nn_setAspectRatio(nn_screen *screen, int width, int height);
void nn_addKeyboard(nn_screen *screen, nn_address address);
void nn_removeKeyboard(nn_screen *screen, nn_address address);
nn_address nn_getKeyboard(nn_screen *screen, nn_size_t idx);
nn_size_t nn_getKeyboardCount(nn_screen *screen);
void nn_setEditableColors(nn_screen *screen, int count);
int nn_getEditableColors(nn_screen *screen);
void nn_setPaletteColor(nn_screen *screen, int idx, int color);
int nn_getPaletteColor(nn_screen *screen, int idx);
int nn_getPaletteCount(nn_screen *screen);
int nn_maxDepth(nn_screen *screen);
int nn_getDepth(nn_screen *screen);
void nn_setDepth(nn_screen *screen, int depth);
const char *nn_depthName(int depth);
double nn_colorDistance(int colorA, int colorB);
int nn_mapColor(int color, int *palette, int paletteSize);
int nn_mapDepth(int color, int depth, nn_bool_t legacy);
void nn_getStd4BitPalette(int color[16]);
void nn_getStd8BitPalette(int color[256]);
// Std4bit uses actual MC dye colors, except for white and black
// Legacy uses OC's versions that were brightened
void nn_getLegacy4BitPalette(int color[16]);
void nn_setPixel(nn_screen *screen, int x, int y, nn_scrchr_t pixel);
nn_scrchr_t nn_getPixel(nn_screen *screen, int x, int y);
nn_bool_t nn_isDirty(nn_screen *screen);
void nn_setDirty(nn_screen *screen, nn_bool_t dirty);
nn_bool_t nn_isPrecise(nn_screen *screen);
void nn_setPrecise(nn_screen *screen, nn_bool_t precise);
nn_bool_t nn_isTouchModeInverted(nn_screen *screen);
void nn_setTouchModeInverted(nn_screen *screen, nn_bool_t touchModeInverted);
nn_bool_t nn_isOn(nn_screen *buffer);
void nn_setOn(nn_screen *buffer, nn_bool_t on);
nn_component *nn_addScreen(nn_computer *computer, nn_address address, int slot, nn_screen *screen);
typedef struct nn_gpuControl {
// VRAM Buffers
int totalVRAM;
int maximumBufferCount;
int defaultBufferWidth;
int defaultBufferHeight;
// Calls per tick, only applicable to screens
double screenCopyPerTick;
double screenFillPerTick;
double screenSetsPerTick;
double bitbltPerTick; // for bitblit
// Heat
double heatPerPixelChange;
double heatPerPixelReset;
double heatPerVRAMChange;
// Energy
double energyPerPixelChange;
double energyPerPixelReset;
double energyPerVRAMChange;
} nn_gpuControl;
// the control is COPIED.
nn_component *nn_addGPU(nn_computer *computer, nn_address address, int slot, nn_gpuControl *control);
typedef struct nn_networkControl {
double packetBytesPerTick;
double heatPerFullPacket;
double energyPerFullPacket;
} nn_networkControl;
nn_bool_t nn_wakeupMatches(nn_value *values, nn_size_t valueLen, const char *wakeUp, nn_bool_t fuzzy);
// NULL on success, error string on failure
// this *retains* all of those values, meaning you must drop them after call this function
const char *nn_pushNetworkMessage(nn_computer *computer, nn_address receiver, nn_address sender, nn_size_t port, double distance, nn_value *values, nn_size_t valueLen);
typedef struct nn_modemTable {
void *userdata;
void (*deinit)(void *userdata);
// basic limits
nn_bool_t wireless;
nn_size_t maxValues;
nn_size_t maxPacketSize;
nn_size_t maxOpenPorts;
// ports
nn_bool_t (*isOpen)(void *userdata, nn_size_t port, nn_errorbuf_t err);
nn_bool_t (*open)(void *userdata, nn_size_t port, nn_errorbuf_t err);
// port NN_PORT_CLOSEALL means close all
nn_bool_t (*close)(void *userdata, nn_size_t port, nn_errorbuf_t err);
nn_size_t (*getPorts)(void *userdata, nn_size_t *ports, nn_errorbuf_t err);
// messages
// Address is NULL if broadcasting
nn_bool_t (*send)(void *userdata, nn_address address, nn_size_t port, nn_value *values, nn_size_t valueCount, nn_errorbuf_t err);
// signal strength
double maxStrength;
double (*getStrength)(void *userdata, nn_errorbuf_t err);
double (*setStrength)(void *userdata, double strength, nn_errorbuf_t err);
// wake message
nn_size_t (*getWakeMessage)(void *userdata, char *buf, nn_errorbuf_t err);
nn_size_t (*setWakeMessage)(void *userdata, const char *buf, nn_size_t buflen, nn_bool_t fuzzy, nn_errorbuf_t err);
} nn_modemTable;
typedef struct nn_modem nn_modem;
typedef struct nn_debugLoopbackNetworkOpts {
nn_computer *computer;
nn_address address;
nn_size_t maxValues;
nn_size_t maxPacketSize;
nn_size_t maxOpenPorts;
double maxStrength;
nn_bool_t isWireless;
} nn_debugLoopbackNetworkOpts;
nn_modem *nn_newModem(nn_Context *context, nn_modemTable table, nn_networkControl control);
nn_modem *nn_debugLoopbackModem(nn_Context *context, nn_debugLoopbackNetworkOpts opts, nn_networkControl control);
nn_guard *nn_getModemLock(nn_modem *modem);
void nn_retainModem(nn_modem *modem);
nn_bool_t nn_destroyModem(nn_modem *modem);
nn_component *nn_addModem(nn_computer *computer, nn_address address, int slot, nn_modem *modem);
typedef struct nn_tunnelTable {
void *userdata;
void (*deinit)(void *userdata);
nn_size_t maxValues;
nn_size_t maxPacketSize;
void (*send)(void *userdata, nn_value *values, nn_size_t valueCount, nn_errorbuf_t err);
nn_size_t (*getChannel)(void *userdata, char *buf, nn_errorbuf_t err);
nn_size_t (*getWakeMessage)(void *userdata, char *buf, nn_errorbuf_t err);
nn_size_t (*setWakeMessage)(void *userdata, const char *buf, nn_size_t buflen, nn_bool_t fuzzy, nn_errorbuf_t err);
} nn_tunnelTable;
typedef struct nn_tunnel nn_tunnel;
nn_tunnel *nn_newTunnel(nn_Context *context, nn_tunnelTable table, nn_networkControl control);
nn_tunnel *nn_debugLoopbackTunnel(nn_Context *context, nn_debugLoopbackNetworkOpts opts, nn_networkControl control);
nn_guard *nn_getTunnelLock(nn_tunnel *tunnel);
void nn_retainTunnel(nn_tunnel *tunnel);
nn_bool_t nn_destroyTunnel(nn_tunnel *tunnel);
nn_component *nn_addTunnel(nn_computer *computer, nn_address address, int slot, nn_tunnel *tunnel);
typedef struct nn_diskDriveTable {
void *userdata;
void (*deinit)(void *userdata);
// velocity is 0 or less for "default"
void (*eject)(void *userdata, double velocity, nn_errorbuf_t err);
nn_bool_t (*isEmpty)(void *userdata);
nn_address (*media)(void *userdata, nn_Alloc *alloc, nn_errorbuf_t err);
} nn_diskDriveTable;
typedef struct nn_diskDrive nn_diskDrive;
nn_diskDrive *nn_newDiskDrive(nn_Context *context, nn_diskDriveTable table);
nn_guard *nn_getDiskDriveLock(nn_diskDrive *diskDrive);
void nn_retainDiskDrive(nn_diskDrive *diskDrive);
nn_bool_t nn_destroyDiskDrive(nn_diskDrive *diskDrive);
nn_component *nn_addDiskDrive(nn_computer *computer, nn_address address, int slot, nn_diskDrive *diskDrive);
typedef struct nn_hologram nn_hologram;
nn_hologram *nn_newHologram(nn_Context *context, int pallette_len, int width_x, int width_z, int height, int depth);
nn_guard *nn_getHologramLock(nn_hologram *hologram);
void nn_retainHologram(nn_hologram *hologram);
nn_bool_t nn_destroyHologram(nn_hologram *hologram);
nn_component *nn_addHologram(nn_computer *computer, nn_address address, int slot, nn_hologram *hologram);
void nn_hologram_clear(nn_hologram *hologram);
int nn_hologram_get(nn_hologram *hologram, int x, int y, int z);
void nn_hologram_set(nn_hologram *hologram, int x, int y, int z, int value);
void nn_hologram_fill(nn_hologram *hologram, int x, int z, int minY, int maxY, int value);
void nn_hologram_copy(nn_hologram *hologram, int x, int z, int sx, int sz, int tx, int tz);
float nn_hologram_getScale(nn_hologram *hologram);
void nn_hologram_setScale(nn_hologram *hologram, float value);
void nn_hologram_getTranslation(nn_hologram *hologram, double *x, double *y, double *z);
void nn_hologram_setTranslation(nn_hologram *hologram, double x, double y, double z);
int nn_hologram_maxDepth(nn_hologram *hologram);
int nn_hologram_getPaletteColor(nn_hologram *hologram, int index);
int nn_hologram_setPaletteColor(nn_hologram *hologram, int index, int value);
typedef struct nn_externalComputerTable_t {
void *userdata;
void (*deinit)(void *userdata);
nn_bool_t (*start)(void *userdata, nn_computer *requester, nn_errorbuf_t err);
nn_bool_t (*stop)(void *userdata, nn_computer *requester, nn_errorbuf_t err);
nn_bool_t (*isRunning)(void *userdata, nn_computer *requester, nn_errorbuf_t err);
void (*beep)(void *userdata, nn_computer *requester, double freq, double duration, double volume, nn_errorbuf_t err);
void (*crash)(void *userdata, nn_computer *requester, nn_errorbuf_t err);
nn_architecture *(*getArchitecture)(void *userdata, nn_computer *requester, nn_errorbuf_t err);
void (*getDeviceInfo)(void *userdata, nn_deviceInfoList_t *list, nn_computer *requester, nn_errorbuf_t err);
nn_bool_t (*isRobot)(void *userdata, nn_computer *requester, nn_errorbuf_t err);
} nn_externalComputerTable_t;
typedef struct nn_externalComputer_t nn_externalComputer_t;
// An external computer is a computer component.
// It may refer to the current computer (counter-intuitively)
// It may exist when the computer it is refering too has no running state (aka is powered off)
nn_externalComputer_t *nn_newExternalComputer(nn_Context *ctx, nn_externalComputerTable_t table);
nn_guard *nn_externalComputer_getLock(nn_externalComputer_t *external);
void nn_externalComputer_retain(nn_externalComputer_t *external);
nn_bool_t nn_externalComputer_destroy(nn_externalComputer_t *external);
nn_component *nn_externalComputer_addTo(nn_computer *computer, nn_address address, int slot, nn_externalComputer_t *external);
#ifdef __cplusplus // c++ sucks
}
#endif
#endif