#include "computer.h" #include "component.h" #include "neonucleus.h" #include nn_computer *nn_newComputer(nn_universe *universe, nn_address address, nn_architecture *arch, void *userdata, size_t memoryLimit, size_t componentLimit) { nn_computer *c = nn_malloc(sizeof(nn_computer)); c->components = nn_malloc(sizeof(nn_component) * componentLimit); if(c->components == NULL) { nn_free(c); return NULL; } c->address = nn_strdup(address); if(c->address == NULL) { nn_free(c->components); nn_free(c); return NULL; } c->lock = nn_newGuard(); if(c->lock == NULL) { nn_free(c->address); nn_free(c->components); nn_free(c); return NULL; } c->timeOffset = nn_getTime(universe); c->supportedArchCount = 0; c->argc = 0; c->retc = 0; c->err = NULL; c->allocatedError = false; c->state = NN_STATE_SETUP; c->componentLen = 0; c->componentCap = componentLimit; c->userCount = 0; c->maxEnergy = 5000; c->signalCount = 0; c->universe = universe; c->arch = arch; c->nextArch = arch; c->userdata = userdata; c->memoryTotal = memoryLimit; c->tmpAddress = NULL; c->temperature = 30; c->roomTemperature = 30; c->temperatureCoefficient = 1; c->callCost = 0; c->callBudget = 256; // Setup Architecture c->archState = c->arch->setup(c, c->arch->userdata); if(c->archState == NULL) { nn_deleteGuard(c->lock); nn_free(c->address); nn_free(c->components); nn_free(c); return NULL; } return c; } nn_universe *nn_getUniverse(nn_computer *computer) { return computer->universe; } void nn_setTmpAddress(nn_computer *computer, nn_address tmp) { nn_free(computer->tmpAddress); computer->tmpAddress = nn_strdup(tmp); } nn_address nn_getComputerAddress(nn_computer *computer) { return computer->address; } nn_address nn_getTmpAddress(nn_computer *computer) { return computer->tmpAddress; } int nn_tickComputer(nn_computer *computer) { computer->callCost = 0; computer->state = NN_STATE_RUNNING; nn_clearError(computer); computer->arch->tick(computer, computer->archState, computer->arch->userdata); return nn_getState(computer); } double nn_getUptime(nn_computer *computer) { return nn_getTime(computer->universe) - computer->timeOffset; } size_t nn_getComputerMemoryUsed(nn_computer *computer) { return computer->arch->getMemoryUsage(computer, computer->archState, computer->arch->userdata); } size_t nn_getComputerMemoryTotal(nn_computer *computer) { return computer->memoryTotal; } void *nn_getComputerUserData(nn_computer *computer) { return computer->userdata; } void nn_addSupportedArchitecture(nn_computer *computer, nn_architecture *arch) { if(computer->supportedArchCount == NN_MAX_ARCHITECTURES) return; computer->supportedArch[computer->supportedArchCount] = arch; computer->supportedArchCount++; } nn_architecture *nn_getSupportedArchitecture(nn_computer *computer, size_t idx) { if(idx >= computer->supportedArchCount) return NULL; return computer->supportedArch[idx]; } nn_architecture *nn_getArchitecture(nn_computer *computer) { return computer->arch; } nn_architecture *nn_getNextArchitecture(nn_computer *computer) { return computer->nextArch; } void nn_setNextArchitecture(nn_computer *computer, nn_architecture *arch) { computer->nextArch = arch; } void nn_deleteComputer(nn_computer *computer) { nn_clearError(computer); nn_resetCall(computer); while(computer->signalCount > 0) { nn_popSignal(computer); } for(size_t i = 0; i < computer->userCount; i++) { nn_free(computer->users[i]); } computer->arch->teardown(computer, computer->archState, computer->arch->userdata); nn_deleteGuard(computer->lock); nn_free(computer->components); nn_free(computer->address); nn_free(computer->tmpAddress); nn_free(computer); } const char *nn_pushSignal(nn_computer *computer, nn_value *values, size_t len) { if(len > NN_MAX_SIGNAL_VALS) return "too many values"; if(len == 0) return "missing event"; // no OOM for you hehe if(nn_measurePacketSize(values, len) > NN_MAX_SIGNAL_SIZE) { return "too big"; } if(computer->signalCount == NN_MAX_SIGNALS) return "too many signals"; computer->signals[computer->signalCount].len = len; for(size_t i = 0; i < len; i++) { computer->signals[computer->signalCount].values[i] = values[i]; } computer->signalCount++; return NULL; } nn_value nn_fetchSignalValue(nn_computer *computer, size_t index) { if(computer->signalCount == 0) return nn_values_nil(); nn_signal *p = computer->signals; if(index >= p->len) return nn_values_nil(); return p->values[index]; } size_t nn_signalSize(nn_computer *computer) { if(computer->signalCount == 0) return 0; return computer->signals[0].len; } void nn_popSignal(nn_computer *computer) { if(computer->signalCount == 0) return; nn_signal *p = computer->signals; for(size_t i = 0; i < p->len; i++) { nn_values_drop(p->values[i]); } for(size_t i = 1; i < computer->signalCount; i++) { computer->signals[i-1] = computer->signals[i]; } computer->signalCount--; } const char *nn_addUser(nn_computer *computer, const char *name) { if(computer->userCount == NN_MAX_USERS) return "too many users"; char *user = nn_strdup(name); if(user == NULL) return "out of memory"; computer->users[computer->userCount] = user; computer->userCount++; return NULL; } void nn_deleteUser(nn_computer *computer, const char *name) { size_t j = 0; for(size_t i = 0; i < computer->userCount; i++) { char *user = computer->users[i]; if(strcmp(user, name) == 0) { nn_free(user); } else { computer->users[j] = user; j++; } } computer->userCount = j; } const char *nn_indexUser(nn_computer *computer, size_t idx) { if(idx >= computer->userCount) return NULL; return computer->users[idx]; } bool nn_isUser(nn_computer *computer, const char *name) { if(computer->userCount == 0) return true; for(size_t i = 0; i < computer->userCount; i++) { if(strcmp(computer->users[i], name) == 0) return true; } return false; } void nn_setCallBudget(nn_computer *computer, size_t callBudget) { computer->callBudget = callBudget; } size_t nn_getCallBudget(nn_computer *computer) { return computer->callBudget; } void nn_callCost(nn_computer *computer, size_t cost) { computer->callCost += cost; } size_t nn_getCallCost(nn_computer *computer) { return computer->callCost; } bool nn_isOverworked(nn_computer *computer) { return computer->callCost >= computer->callBudget; } int nn_getState(nn_computer *computer) { return computer->state; } void nn_setState(nn_computer *computer, int state) { computer->state = state; } void nn_setEnergyInfo(nn_computer *computer, double energy, double capacity) { computer->energy = energy; computer->maxEnergy = capacity; } double nn_getEnergy(nn_computer *computer) { return computer->energy; } double nn_getMaxEnergy(nn_computer *computer) { return computer->maxEnergy; } void nn_removeEnergy(nn_computer *computer, double energy) { if(computer->energy < energy) { // blackout computer->energy = 0; computer->state = NN_STATE_BLACKOUT; return; } computer->energy -= energy; } void nn_addEnergy(nn_computer *computer, double amount) { if(computer->maxEnergy - computer->energy < amount) { computer->energy = computer->maxEnergy; return; } computer->energy += amount; } double nn_getTemperature(nn_computer *computer) { return computer->temperature; } double nn_getThermalCoefficient(nn_computer *computer) { return computer->temperatureCoefficient; } double nn_getRoomTemperature(nn_computer *computer) { return computer->roomTemperature; } void nn_setTemperature(nn_computer *computer, double temperature) { computer->temperature = temperature; if(computer->temperature < computer->roomTemperature) computer->temperature = computer->roomTemperature; } void nn_setTemperatureCoefficient(nn_computer *computer, double coefficient) { computer->temperatureCoefficient = coefficient; } void nn_setRoomTemperature(nn_computer *computer, double roomTemperature) { computer->roomTemperature = roomTemperature; if(computer->temperature < computer->roomTemperature) computer->temperature = computer->roomTemperature; } void nn_addHeat(nn_computer *computer, double heat) { computer->temperature += heat * computer->temperatureCoefficient; if(computer->temperature < computer->roomTemperature) computer->temperature = computer->roomTemperature; } void nn_removeHeat(nn_computer *computer, double heat) { computer->temperature -= heat; if(computer->temperature < computer->roomTemperature) computer->temperature = computer->roomTemperature; } bool nn_isOverheating(nn_computer *computer) { return computer->temperature > NN_OVERHEAT_MIN; } const char *nn_getError(nn_computer *computer) { return computer->err; } void nn_clearError(nn_computer *computer) { if(computer->allocatedError) { nn_free(computer->err); } computer->err = NULL; computer->allocatedError = false; } void nn_setError(nn_computer *computer, const char *err) { nn_clearError(computer); char *copy = nn_strdup(err); if(copy == NULL) { nn_setCError(computer, "out of memory"); return; } computer->err = copy; computer->allocatedError = true; } void nn_setCError(nn_computer *computer, const char *err) { nn_clearError(computer); // we pinky promise this is safe computer->err = (char *)err; computer->allocatedError = false; } nn_component *nn_newComponent(nn_computer *computer, nn_address address, int slot, nn_componentTable *table, void *userdata) { nn_component *c = NULL; for(size_t i = 0; i < computer->componentLen; i++) { if(computer->components[i].address == NULL) { c = computer->components + i; break; } } if(c == NULL) { if(computer->componentLen == computer->componentCap) return NULL; // too many c = computer->components + computer->componentLen; computer->componentLen++; } c->address = nn_strdup(address); if(c->address == NULL) return NULL; c->table = table; c->slot = slot; c->computer = computer; if(table->constructor == NULL) { c->statePtr = userdata; } else { c->statePtr = table->constructor(table->userdata, userdata); } return c; } void nn_removeComponent(nn_computer *computer, nn_address address) { for(size_t i = 0; i < computer->componentLen; i++) { if(strcmp(computer->components[i].address, address) == 0) { nn_destroyComponent(computer->components + i); } } } void nn_destroyComponent(nn_component *component) { nn_free(component->address); if(component->table->destructor != NULL) { component->table->destructor(component->table->userdata, component, component->statePtr); } component->address = NULL; // marks component as freed } nn_component *nn_findComponent(nn_computer *computer, nn_address address) { for(size_t i = 0; i < computer->componentLen; i++) { if(strcmp(computer->components[i].address, address) == 0) { return computer->components + i; } } return NULL; } nn_component **nn_listComponent(nn_computer *computer, size_t *len) { nn_component **c = nn_malloc(sizeof(nn_component *) * computer->componentLen); if(c == NULL) return NULL; size_t j = 0; for(size_t i = 0; i < computer->componentLen; i++) { nn_component *component = computer->components + i; if(component->address != NULL) { c[j] = component; j++; } } *len = j; return c; } void nn_resetCall(nn_computer *computer) { for(size_t i = 0; i < computer->argc; i++) { nn_values_drop(computer->args[i]); } for(size_t i = 0; i < computer->retc; i++) { nn_values_drop(computer->rets[i]); } computer->argc = 0; computer->retc = 0; } void nn_addArgument(nn_computer *computer, nn_value arg) { if(computer->argc == NN_MAX_ARGS) return; computer->args[computer->argc] = arg; computer->argc++; } void nn_return(nn_computer *computer, nn_value val) { if(computer->retc == NN_MAX_RETS) return; computer->rets[computer->retc] = val; computer->retc++; } nn_value nn_getArgument(nn_computer *computer, size_t idx) { if(idx >= computer->argc) return nn_values_nil(); return computer->args[idx]; } nn_value nn_getReturn(nn_computer *computer, size_t idx) { if(idx >= computer->retc) return nn_values_nil(); return computer->rets[idx]; } size_t nn_getArgumentCount(nn_computer *computer) { return computer->argc; } size_t nn_getReturnCount(nn_computer *computer) { return computer->retc; } char *nn_serializeProgram(nn_computer *computer, size_t *len) { return computer->arch->serialize(computer, computer->archState, computer->arch->userdata, len); } void nn_deserializeProgram(nn_computer *computer, const char *memory, size_t len) { computer->arch->deserialize(computer, memory, len, computer->archState, computer->arch->userdata); } void nn_lockComputer(nn_computer *computer) { nn_lock(computer->lock); } void nn_unlockComputer(nn_computer *computer) { nn_unlock(computer->lock); }